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ABSTRACT
Stock-recruitment models have been used for decades in fisheries management as a
means of formalizing the expected number of offspring that recruit to a fishery based
on the number of parents. In particular, Ricker’s stock recruitmentmodel is widely used
due to its flexibility and ease with which the parameters can be estimated. After model
fitting, the spawning stock size that produces the maximum sustainable yield (SMSY)
to a fishery, and the harvest corresponding to it (UMSY), are two of the most common
biological reference points of interest to fisheries managers. However, to date there
has been no explicit solution for either reference point because of the transcendental
nature of the equation needed to solve for them. Therefore, numerical or statistical
approximations have been used formore than 30 years. Here I provide explicit formulae
for calculating both SMSY andUMSY in terms of the productivity and density-dependent
parameters of Ricker’s model.
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INTRODUCTION
One of the most difficult problems in the assessment of fish stocks is establishing the
relationship between the spawning stock and subsequent recruitment (Hilborn & Walters,
1992). Stock-recruitment models have been used for decades in fisheries management
as a means of formalizing this relationship (Beverton & Holt, 1957; Ricker, 1954). Over
time, a variety of functional forms have emerged to capture varying assumptions about
depensatory and compensatory mortality (Hilborn & Walters, 1992). In a classroom
setting, deterministic versions of the models provide useful constructs for teaching about
management reference points such as maximum sustained yield (MSY).

In particular, Ricker’s stock recruitment model (Ricker, 1954; Ricker, 1975) is one of the
most widely used models to describe the population dynamics of fishes, such that

R=αSe−bS, (1)

R is the number of recruits produced, S is the number of spawners, α is the dimensionless
number of recruits per spawner produced at very low spawner density, and b is the
strength of density dependence (units: spawner−1). It is common to substitute α= ea into
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Eq. (1) and rewrite it as

R= Sea−bS. (2)

To make the model reflect a stochastic process, Eq. (2) is typically multiplied by a log-
normal error term, so that

R= Sea−bSeε, (3)

and ε is a normally distributed error term with a mean of−1/2 σ and variance σ . This
non-zero mean ensures that a is interpreted as the mean recruits per spawner rather than
the median (Hilborn, 1985). Part of the model’s popularity is due to the relative ease with
which its parameters are estimated. After log transformation, Eq. (3) is typically rewritten
as

ln(R/S)= a−bS+ε, (4)

and the parameters are estimated via simple linear regression. I note here that estimation
of the parameters via a simple observation-error model like (4) can lead to substantial
biases in a and b if the sample size is low (n≤ 10) due to autocorrelation in the residuals
ε (Walters, 1985).

Once the model has been fit to data and any necessary bias corrections made, the
parameters can be used to derive various biological reference points of interest to fisheries
managers. Some of these metrics are rather trivial to compute. For example, the spawning
stock size leading to maximum recruit production (SMSR) is simply 1/b. However, other
reference points are much less straightforward to calculate. In particular, the spawning
stock expected to produce the maximum sustainable yield (SMSY) under deterministic
dynamics is of common interest.

To find SMSY, I express the yield (Y ) as

Y =R−S= Sea−bS−S, (5)

and then take the derivative of Y with respect to S:

dY
dS
= (1−bS)ea−bS−1. (6)

SMSY is then determined by setting Eq. (6) to zero and solving for S. Upon initial inspection,
however, there does not appear to be an explicit solution to this equation in terms of S,
and therefore SMSY is typically solved ‘‘by trial’’ (Ricker, 1975) with some form of gradient
method (e.g., Newton’s as in Hilborn, 1985).

To simplify this issue for common applications, Hilborn (1985) developed a simple
model whereby the ratio of spawning stock size at MSY to that at the unfished equilibrium
(SMSY/Sr ) is a linear function of the parameter a. Specifically, for 0< a≤ 3 he estimated
that

SMSY

Sr
=

SMSY

(a/b)
= 0.5−0.07a, and (7a)

SMSY=
a(0.5−0.07a)

b
. (7b)
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Although this approximation is very useful due to its simplicity, there is no underlying
fundamental support for the statistical form of the relationship.

METHODS
Here I make use of the Lambert W function,W (z), to demonstrate an explicit solution
to Eq. (4) that precludes the need to estimate SMSY via numerical methods or Hilborn’s
(1985) linear approximation. This function has been used for explicit solutions to Roger’s
random predator equation in ecology (McCoy & Bolker, 2008) and susceptible-infected-
removed (SIR) models in epidemiology (Reluga, 2004;Wang, 2010). Specifically,W (z) is
defined as the function that satisfies

W (z)eW (z)
= z (8)

for any complex number z (Lambert 1758 and Euler 1783 as cited in Corless et al., 1996).
Here we are interested only in real values, however, so I replace z with x and note that
W (x) is only defined for x ≥−1/e (Corless et al., 1996). Furthermore, this function is not
injective and has two values for−1/e ≤ x ≤ 0, but as I show below, we are concerned only
with the region where x > 0 andW (x) is a singular, non-negative value.

I begin my explicit solution of SMSY by setting Eq. (6) to zero, such that

(1−bSMSY)ea−bSMSY = 1. (9)

After rearranging terms and multiplying both sides by e, we arrive at

(1−bSMSY)e1−bSMSY = e1−a. (10)

At this point I note the relationship between Eqs. (10) and (8), with 1− bSMSY =W (z)
and e1−a= z . Therefore, we can write

1−bSMSY=W
(
e1−a

)
, and hence (11)

SMSY=
1−W

(
e1−a

)
b

. (12)

We now have an explicit solution for SMSY that depends only on the parameters a and b
from Eq. (2). As mentioned above,W (x) is only defined for x ≥−1/e, which does not
pose any problems here because x = e1−a> 0 ∀ a∈R. For visualization purposes, I show a
plot ofW (e1−a) versus a in Fig. 1.

We can also derive an explicit formula for calculating the fraction of the return
harvested at SMSY, which I call UMSY. As Ricker (1975) shows,

UMSY= bSMSY, (13)

and therefore substituting (12) into (13) gives

UMSY= 1−W
(
e1−a

)
. (14)
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Figure 1 Plot ofW (e1−a) over a range in values of a typically encountered in fisheries.

In practice W (x) may be approximated numerically using some form of gradient
method. Corless et al. (1996) recommend Halley’s method, with the update equation
given by

wj+1=wj−
wjewj −x

ewj
(
wj+1

)
−
(wj+2)(wje

wj−x)
2wj+2

. (15)

I used an initial guess of w0= 3/4 ln(x+1) based on the shape of W (x) over the range of
a typically considered in fisheries research (i.e., 0< a< 3 as in Hilborn, 1985). If, however,
one must estimate W (x) numerically, then one should ask whether doing so is, in fact,
computationally faster. Therefore, as a test I randomly selected 1,000 values each for
0< a≤ 3 and 10−5≤ b≤ 10−3, and then solved for SMSY using both Newton’s method as
suggested by Ricker (1975), and Halley’s method as in Eq. (15).

RESULTS AND DISCUSSION
Recent analyses have relied on estimating SMSY via Hilborn’s (1985) linear approximation
when calculating optimal yield profiles (Fleischman et al., 2013) or the effects of observation
error on biases in parameter estimates (Su & Peterman, 2012). On the other hand, solving
for SMSY using W (x) and Halley’s method is not only convenient; it also offers an
appreciable computational advantage over the standard Newton method. Although both
methods converged in less than 10 iterations during my test, Halley’s method was always
faster and less variable overall (Fig. 2). Therefore, estimating SMSY via Halley’s method
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Figure 2 Histograms showing the distribution of the number of iterations that each of the two numer-
ical methods takes to converge to SMSY using a threshold of 10−6.

might save significant time in applications such as management strategy evaluations that
are much more computationally intensive than a simple one-case solution.

Although implementing Eq. (15) may seem a bit daunting to individuals less familiar
with numerical methods, a variety of contemporary software packages (e.g., MATLAB,
R) include built-in functions to calculate W (x) directly. This means that anyone using a
personal computer to estimate the parameters in a Ricker model can easily estimate SMSY

from Eq. (12) as I demonstrate in Table 1; I show the results from my R implementation
for a range of a and b in Fig. 3. For those preferring to use Microsoft Excel, there is no
built-in function to calculateW (x), but I have implemented Eq. (15) as the VBA function
‘LAMBERTW’ in the Microsoft Excel add-in file ‘LambertWfunc.xlam’ (see Fig. S1 for
download and install instructions).

Here I have outlined a new method to easily calculate SMSY from the productivity (a)
and density-dependent (b) parameters in a Ricker model using readily available functions
in several software packages. This method is much more straightforward than trying to
solve for SMSY using numerical methods and should be useful in many classroom settings.
Although there could be some utility in actually going through the exercise of numerically
deriving the answer, it is rare nowadays, for example, for anyone to code a random number
generator because of their ubiquitous implementation in standard software. In addition,
the explicit analytical solution is closed-form with respect to the special functions, and
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Table 1 Example code for directly calculating SMSY in R, Matlab, and Excel; the values for a and bwere
chosen arbitrarily. Note that the R code requires the ‘gsl’ package to be installed, and the Excel code re-
quires the ‘LAMBERTW’ function contained in the Excel Add-in file LambertWfunc.xlam.

Software Code example
> library(‘‘gsl’’)

> a= 1

> b= 5e−4
R

> Smsy= (1 − lambert_W0(exp(1−a))) / b
>> a= 1

>> b= 5e−4MATLAB

>> Smsy= (1 − lambertw(exp(1−a))) / b

A B
1 a 1
2 b 5e−4Excel
3 Smsy = (1− LAMBERTW(EXP(1− B1))) / B2

Figure 3 Contour plot showing values of SMSY for combinations of the a and b parameters in Eq. (2).
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therefore precludes the need to estimate SMSY via Hilborn’s (1985) approximation. Thus,
due to the speed and ease with which these new equations are calculated, I recommend
that practitioners use them for the estimation of SMSY and UMSY in lieu of those listed in
Appendix III of Ricker (1975) and Table 7.2 of Hilborn & Walters (1992).
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